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The measurement of general intelligence 
and aspects of cognitive performance using 
standardized tests have a long pedigree going 
back over 100 years. Indeed, intelligence 
testing has been described as possibly 
the greatest success story of psychology. 
However, only recently has brain imaging 
reached a level of technological sophistication 
where neuroscientists can start to tackle the 
vastly complex challenge of determining how 
intelligence arises in the brain. Locating the 
neural underpinnings of intelligence is now a 
major goal for modern intelligence research.

This article seeks to explain, for the benefi t 
of the non-expert, the rationale, methods, and 
fi ndings of a research study I conducted for 
my BSc. My motivation for taking a degree in 
cognitive neuroscience in the fi rst place was 
driven by my longstanding interest in what 
underpins human intelligence and special 
abilities and, in particular, extremely high 
intelligence. Surprisingly, there was no part 
of the cognitive neuroscience curriculum or, 
indeed, any part of the psychology department 

curriculum dealing specifi cally with 
intelligence, psychometric testing, individual 
diff erences, or diff erential psychology. 
However, since these topics had long been 
a personal interest of mine, I had covered 
them extensively through my private reading. 
And, although on the course we had had 
introductory lectures on electroencephalogram 
(EEG) and neuroimaging as part of the 
general neuroscientifi c research-methods 
toolbox, most of my knowledge about EEG 
came from private workshops that I had 
actually started attending several years before 
starting the degree. When I had to choose a 
fi nal-year research project, combining my 
interests in EEG and intelligence seemed like 
a fun thing to do.

The genesis of my research study was the 
intriguing claim by two US neurofeedback 
experts, Thatcher and Lubar, that they had 
identifi ed various EEG measurements which 
showed a clear statistical relationship with 
children’s and adults’ full-scale IQs (see 
Figure 1).1 
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Figure 1: Correlations between qEEG measures and full-scale IQ. 
Adapted from Thatcher and Lubar (2009).2
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At the time of that publication (2009), their 
“NeuroGuide” database contained EEG, 
psychometric, educational, and medical data 
from 332 individuals, which the authors had 
collected to produce a “normal” reference 
sample against which neurofeedback training 
protocols could be designed.

I wondered whether I could replicate some 
of Thatcher and Lubar’s fi ndings, not on 
full-scale IQ as they had done, but on the 
two most important second-stratum IQ 
abilities—fl uid and crystallized intelligence 
(see Figure 2). Furthermore, I wondered how 
the relationships between those variables (the 
things selected for measurement) from the 
EEG and aspects of psychometric intelligence 
would hold up in the very-highest IQ ranges.

To do this, I was going to need the following 
three things:

1.  A participant sample that covered the IQ 
distribution from the average range (the 68% 
in the middle) all the way to the highly gifted 
0.1% (see Figure 3). I decided I could cover 

the IQ range I needed by asking for volunteers 
from local neighborhood websites and fellow 
students on the course, all the way up to 
members of Mensa and high-IQ societies with 
even more extreme membership cut-off  levels.

2.  Tests that could be administered easily 
and inexpensively and that measured what I 
needed to measure. British Mensa administers 
two ability tests at their regular testing 
sessions for membership application purposes: 
the Cattell Verbal (crystallized intelligence) 
and Cattell Culture Fair (fl uid intelligence). 
Several prospective participants had already 
taken these tests and were, or had previously 
been, members of Mensa; so it was just a 
matter of arranging for the other volunteers 
to take them at their local test center. Having 
Mensa administer the tests for my study 
also got around the fact that, as a student, I 
had no access to professionally published 
standardized intelligence tests.

3.  To identify which of Thatcher and Lubar’s 
EEG variables I was going to replicate. It 
would have been tempting to choose the ones 

Figure 2: The three-stratum hierarchical structure of intelligence (Carroll, 1993).3 

Fluid and crystallized intelligence, accounting for most of the variance in tests of ability 
and “intelligence,” can be thought of as an amalgam of these two factors (Kline, 1991).4
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with the strongest correlations (a statistical 
expression of how closely two measurements 
are related), but there was surprisingly little 
information anywhere on what most of these 
variables were or how to compute them. I 
ended up choosing the three variables that had 
the most support in the general EEG literature, 
even if they were not at the top of Thatcher 
and Lubar’s list.

It may seem strange to start a research study 
believing that one’s hypotheses will not stand 
up to scrutiny, but to understand this skeptical 
viewpoint, a little explanation is in order 
about the nature of very high IQ. Bear in 
mind, fi rst of all, that nearly 70% of the study 
participants had an IQ score that at least met 
the qualifying level for Mensa membership. It 
is quite possible that measurements that may 
have a decent linear relationship throughout 
other parts of the IQ scale might not continue 

to have the same type of relationship, or any 
relationship at all, at the extremes.

There is a phenomenon that has been known 
since the early days of IQ research, in which 
the correlations between psychometric test 
tasks decreases in higher-ability groups. 
Spearman (1927) called this phenomenon 
the “Law of Diminishing Returns,” while 
later authors dubbed it the “discontinuity 
hypothesis.”6 Astonishingly, however, no 
formal research into Spearman’s Law of 
Diminishing Returns was carried out until 
1989, when Detterman and Daniel got hold 
of the standardization samples for the then-
current editions of the children’s and adults’ 
Wechsler IQ tests; divided the data into fi ve 
ability groupings from low to high; and 
statistically analyzed the correlations between 
the diff erent tasks and scales within the tests.7 

Figure 3: Assuming IQ does, in fact, follow this type of frequency distribution (and, yes, that 
has been called into question), this diagram shows the approximate percentage of people 

who would score within a certain range of IQ. A top 2% score qualifi es you for Mensa. A top 
0.1% score qualifi es you for International Society for Philosophical Enquiry (ISPE). Most 

standardized tests do not measure above 160 on this scale.5
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Their fi ndings confi rmed the observations 
of the early IQ researchers: poor performers 
on one type of psychometric task tend to 
perform almost equally poorly on all of them, 
leading to high correlations between the tasks 
among that ability group. On the other hand, 
high performers tend to possess a much more 
uneven spread of scores between the Wechsler 
sub-scales, leading to much lower correlations 
between the various types of tasks.

This fi nding presents an anomaly for high-IQ 
research: does Spearman’s g, or the general 
intelligence factor, exist in the high range? In 
a 2002 interview with members of the Mega 
Foundation, one of the super-elite high-IQ 
groups, intelligence researcher Arthur Jensen 
suggested that there is a point, possibly around 
IQ 160, where the statistical relationships 
between performances on diff erent types of 
IQ tasks break down altogether.8 It may still 
be possible to measure the intelligence of the 
very highest performers using psychometric 
tests if a suffi  ciently robust standardization 
sample in those extreme ranges could be 
assembled, but their intelligence might 
possibly be better represented by more 
specifi c measures of ability (Stratum I or II) 
in Carroll’s three-stratum model. In any case, 
the priority for my own ongoing research will 
be to assemble a suffi  ciently large database of 
both very high scorers and those closer to the 
center of the IQ distribution in order to render 
meaningful statistical analysis.

Neural Theories of Intelligence

Attempts to investigate intelligence through 
biological, rather than psychometric, means 
have an interesting history. In the late 
nineteenth century, Sir Francis Galton made 
the fi rst attempt to measure intelligence 
quantitatively, through a series of “elementary 
cognitive tasks” that measured such things 
as grip strength and visual acuity (Jensen, 
1980).9 Although Galton’s methods lacked 

validity, they inspired much follow-up 
research. Paradigms such as reaction time 
and inspection time, which were rooted in 
his original ideas, were in use well into the 
twentieth century. The increasing availability 
of neuroimaging for research, however, led to 
largely abandoning eff orts to link such basic 
sensorimotor tasks to intelligence.

The appearance of PET (positron emission 
tomography) in the 1980s, and then later 
fMRI (functional magnetic resonance 
imaging), began to give researchers the ability 
to directly observe activity associated with 
information processing in the brain. Arising 
from these early imaging studies, some 
tentative theories started to appear regarding 
the cognitive neuroscience of intelligence. The 
best-supported theory regarding the neural 
basis of intelligence is the Parieto-Frontal 
Integration Theory of intelligence, or P-FIT 
(Jung & Haier, 2007).10

The P-FIT was based on a review of 
37 neuroimaging studies which the authors 
drew upon to propose how intelligence-
related information is processed in the brain. 
Neuroimaging studies tend to refer to brain 
regions by means of a numbering system 
called Brodmann’s Areas, named after the 
early twentieth-century neuroanatomist who 
fi rst identifi ed them. Jung and Haier realized 
that, in the majority of studies they reviewed, 
broadly similar Brodmann’s Areas were 
repeatedly implicated (see Figure 4) and that 
information appeared to travel through this 
brain network in the following sequence.
Firstly, information entering through the 
senses is perceived in the visual cortex, or 
occipital lobe, at the back of the brain (areas 
18 and 19 on the diagram), and in the auditory 
cortex in the temporal lobes (21, 37). This 
sensory information undergoes more elaborate
processing in the parietal lobe (7, 39, 40) and 
is subsequently fed forward to the frontal 
cortex for decision making and analysis (6, 9,
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10, 45, 46, 47). The anterior cingulate cortex 
(32) is also involved in selecting desired 
responses. The integrity of white-matter tracts 
between these areas is also assumed to be 
critical for the communication of information 
between them, notably one tracing the path 
of the curved arrow on the diagram which 
connects the parietal and frontal lobes. Brain 
regions implicated by the P-FIT relate to 
such cognitive processes as working memory, 
attention, language, and fl uid reasoning; 
and the theory holds that integration of 
these various processes is fundamental to 
intelligence.

So, where does EEG come into the study of 
intelligence? Attempts were made to connect 
EEG traces to diff erences in IQ scores as far 
back as the mid-twentieth century but with 
crude equipment and poor research designs. 
A lack of standardization made interpretation 
of these early studies diffi  cult. However, 
modern EEG hardware technology, standards 
governing research designs and electrode 
placement, the use of computers to record and 
save the EEG data, and sophisticated software 
to visually and quantitatively interpret the 
recorded data now mean that much of what 
was once possible to see only with fMRI can 
now be done relatively simply and cheaply 
with EEG.

EEG Recordings

An EEG uses electrodes placed on the scalp 
to detect the electrical activity of the brain 
through the skull, etc. (see Figure 5), and 
feeds this information via an amplifi er into 
a computer. Quantitative EEG (qEEG for 
short) is a procedure that digitally processes 
the recorded EEG activity. Various algorithms 
can be selected depending on how the 
data are to be analyzed, e.g., producing 
visual maps of cortical functioning (“brain 
maps”), comparing the data to a normative 

Figure 4: Areas of the brain implicated 
in the Parieto-Frontal Integration 

Theory of Intelligence.11

Figure 5: How an EEG detects signals. 
Pyramidal neurons in the cortex lie perpendicular to the surface of the skull, and 

their electrical activity creates an electrical dipole. It takes thousands of neurons to be 
simultaneously active to create suffi  cient electrical activity to be picked up by the EEG.12 
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database containing reference values (such 
as Thatcher and Lubar’s “NeuroGuide” 
database, mentioned earlier), or exporting 
numerical data for statistical analysis in 
research.

EEG sensors are placed according to a 
standard pattern called the International 
1020 system, although it is common 
nowadays to use an elasticated fabric cap 
with inbuilt electrodes already positioned. 
The use of a 19-electrode arrangement, or 
montage, is now fairly standard for most 
clinical, and many research, applications. 
Figure 6 shows the labels for the electrode 
sites, the various areas on the scalp being 
designated as frontal pole, frontal, central, 
temporal, parietal and occipital. By 
convention, the numbered sites on the left 
are odd-numbered while the corresponding 
ones on the right are even-numbered, with Z 
designating the midline. 

Data are recorded simultaneously from all 
19 channels and recorded on a laptop using 
specialist EEG software. Each electrode 
corresponds to one channel of EEG, and 

Figure 6: EEG electrode placement sites.13 

once recording starts, you see 19 wavy lines going 
across the computer screen (see Figure 7).

A standard recording typically consists of several 
minutes of resting-state EEG in both eyes-
closed and eyes-open conditions to record the 

Figure 7: Screenshot of the author’s EEG. Each channel on the central diagram corresponds to 
one wavy line of EEG, each of which is labeled on the left-hand side of the screen. The red spiky 

line is the heart beat, and the thin blue line near the bottom of the screen is the respiration.
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individual’s general brain functioning and a 
20-minute continuous-performance task to 
assess attention and decision making. It is 
also common to record other physiological 
data at the same time, such as heart rate and 
respiration, to get a sense of the individual’s 
autonomic nervous system functioning.

Once the recording is complete and unwanted 
body motions (“artifacts”) have been 
removed, special software algorithms can then 
be used to analyze the data. How the data are 
analyzed will depend on what the clinician or 
researcher is looking for. A neurologist may 
be primarily interested in signs of epileptic 
seizures, while a clinical neuropsychologist 
who uses neurofeedback to devise a training 
plan may be interested in how the EEGs of 
patients with conditions such as ADHD or 
trauma vary from a norm database. For my 
research study, I was interested to see how 
the EEGs of participants of varying IQ levels 
compared to one another. To do this, I selected 
the three variables from Thatcher and Lubar’s 
study that were the best supported by other

EEG research literature: individual alpha peak 
frequency, alpha power, and coherence.

Individual Alpha Peak Frequency

EEG is o� en referred to in terms of ranges of 
frequencies, with delta being the slowest and 
gamma being the fastest (see Figure 8). � e 
exact boundaries between these frequency 
bands are somewhat arbitrary, but the names 
serve as a useful “shorthand.”

Individual alpha peak frequency (often just 
called the “alpha peak” or “peak frequency,” 
as it is labeled on the right-hand side of 
Thatcher and Lubar’s histogram) is the 
frequency with the strongest power in the 
EEG spectrum, which occurs in the 7.5 to 
12.5 Hz frequency band (Klimesch, 1999).15

The alpha peak of most healthy adults will 
usually lie somewhere between 9.5 and 
11.5 Hz and often shows as a very dominant 
peak of alpha frequency at one or both of the 
occipital electrodes, O1 and O2. You can quite 
clearly see the alpha peak at both of those 
locations in the frequency spectra chart shown 
in Figure 9.

Individual alpha peak frequency refl ects 
both state (in the moment) and trait (one’s 
typical characteristic) levels of overall cortical 
arousal (Anokhin & Vogel, 1996) and can 
refl ect sympathetic arousal, or “fi ght or 
fl ight,” which would obviously show up in 
the brain as well as in the heart and breathing 
rate.16 However, research has also shown that 
higher alpha-peak frequencies also correspond 
to higher IQ scores. What I needed to do was 
to tease the two apart.

Because we had also recorded the heart and 
respiration rates as part of the EEG recording 
session, it was possible to use these data 
to compute a measurement known as heart 
rate variability (HRV), which is a sign of 
healthy autonomic nervous system function 
and means that the individual is able to cope Figure 8: EEG frequency bands.14
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well with stressors. This enabled me to use 
a statistical technique known as a partial 
correlation to control for HRV scores as a 
measurement of physiological arousal, with 
the assumption that what would be left over 
would be the part of the alpha peak data that 
corresponded with IQ.

EEG Power

There are two ways of considering the 
power or amplitude of the frequencies in an 
EEG recording. Absolute EEG power is the 
magnitude of the EEG frequencies of interest, 
measured in uV2, or microvolts squared 
(Thatcher and Lubar’s third right variable). 
However, absolute EEG power decreases with 
age, not least because the skull thickens as one 
matures. To compensate for the varying ages 
of my participants, therefore, I used a slightly 
diff erent measurement of EEG power: relative 
power. Relative power is the power of a given 
frequency band or range (e.g., the yellow 
alpha in Figure 9) expressed as a percentage 
of the power of the total EEG signal (all the 
colored bands). Most studies I found which 
examined EEG power in relation to IQ 

showed that the alpha band correlated most 
closely with IQ.

Coherence

The third EEG variable I had selected was 
coherence (second left on Thatcher and 
Lubar’s histogram). Coherence measures 
the similarity of simultaneous EEG activity 
between two points, or sensor locations, and 
is understood as a measure of connectivity 
between brain regions. In quantitative EEG 
terms, this is expressed as a correlation, 
with unusually low values indicating 
hypo-coherence and unusually high values 
indicating hyper-coherence. Large deviations 
either way from the normal coherence range 
can suggest less-than-optimal functioning.

It is possible to map coherence between 
all or any pair of electrodes in any selected 
frequency band or range. I did not attempt 
to analyze every individual frequency or 
frequency band, due to their number and 
complexity, but focused on high alpha (10-
12 Hz), which, according to prior literature, 
seemed to be the frequency band most 

Figure 9: Frequency spectra showing the alpha peak.
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associated with IQ. Furthermore, rather than 
analyze all 171 possible pairings, I had to 
limit my choice to a few which would make 
sense in terms of the main brain networks 
involved in intelligence. How did I choose 
which pairs to use? P-FIT!

The theory assumes that information fl ows 
from the parietal to the frontal lobes. Hence, 
to examine the back-to-front connectivity in 
each hemisphere, I performed my analysis on 
the coherence between electrodes P3-Fp1 on 
the left, and P4-Fp2 on the right.

I did not fi nd any statistically signifi cant 
relationships between these three variables, 
either when analyzed as separate correlations 
or together as a multiple-regression analysis. 
This is most likely because I ended up 
with a sample size of only 25 participants, 
meaning that the study was very under-
powered. However, there is another possible 
interpretation for the lack of a signifi cant 
fi nding. Remember that nearly 70% of my 

sample had an IQ within the top 2% of 
the population. According to Thatcher et 
al. (2016), high-IQ individuals may have 
diff erent patterns of activations between 
short-range brain networks and long-range 
connections.18 High-performance brains 
may be more effi  cient because they are more 
modular—it would be less effi  cient for large 
networks to be active and consuming energy 
all at once when more local networks can take 
care of it. In other words, the brains of high-
IQ individuals are more specialized. How and, 
indeed, if that is connected in any way with 
the uneven psychometric profi les seen in this 
population is an area for future research.

Event-Related Potentials

Event-related potentials, or ERPs, are 
electrophysiological responses resulting 
from the presentation of sensory, cognitive, 
or motor tasks. As part of the EEG sessions, 
ERPs were recorded while administering a 
20-minute visual continuous performance task 

Figure 10: Coherence maps. The thicker the blue lines, the greater the hypo-coherence; the 
thicker the red lines, the greater the hyper-coherence between two electrode locations.17
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(VCPT). Unfortunately, it was not possible 
to analyze the ERP data for my study due 
to timescale and word-count constraints. 
However, it may be interesting for a follow-up 
study to analyze ERP data.

The VCPT requires participants to click 
a mouse as quickly as possible after the 
presentation of one type of stimulus while 
refraining from clicking after other stimuli. 
There are four types of trials, 100 of each, 
consisting of pairs of pictures presented in a 
randomized order (see Figure 11). 

If participants see an animal followed by an 
animal, that is the “Go” trial, and they must 
click as quickly as possible. Animal-plant 
is the “NoGo” trial (do not click), plant-
plant is the “Ignore” trial (do not click), 
and plant-human is the novel stimulus trial, 
accompanied by a pure tone sound (do not 
click). It is trickier than it sounds, and even 
when the participant must not click, the brain 
is still active. In fact, it may actually be more 
diffi  cult to inhibit oneself from clicking 
inappropriately!

Figure 12 shows the ERPs from the VCPT 
with each mini-diagram representing one 
EEG sensor location. Data from each type of 
trial are shown in a di� erent color. � e thin, 
vertical dotted lines represent the time points 
where the images were presented. It is possible 
to see the EEG potentials occurring right a� er 
the presentation of the stimuli. Some of the 
early EEG research suggested that faster ERP 
responses may be connected with a higher 
IQ, but other research has contradicted this. 

Figure 11: Visual continuous 
performance task.19

Figure 12: Event-Related Potentials.20
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Again, this is an area that would be interesting 
to follow up on and clarify using modern EEG 
equipment.

While it was not possible to analyze the ERP 
data in depth, I did examine the behavioral 
data from the VCPT, which includes the 
number of errors, the reaction time, and 
the reaction-time variability. As expected, 
being a generally high-ability sample, many 
participants made zero errors and tended to be 
faster and more consistent than the norms for 
their age group. However, there was a notable 
ceiling eff ect of performance on this task, 
which accords with other research I reviewed 
which suggested that processing speed may 
not correlate with cognitive “power” beyond a 
certain IQ level.

Can You Measure My IQ with EEG?

Exciting though the possibility sounds of 
measuring IQ directly through EEG or other 
forms of neuroimaging, the reader should 
regard the current state of research in the 

fi eld with a healthy skepticism. The fi eld of 
psychometrics and diff erential psychology has 
decades of reliable research behind it, and it 
appears to be one of the few sub-disciplines 
in psychology not to have been hit by the 
recent replication crisis. On the other hand, 
the use of cognitive neuroscience techniques 
to study individual diff erences in intelligence 
is such a new discipline that I have seen only 
one other author besides myself (Deary, 2012) 
use the name I believe correctly describes 
such a venture: diff erential neuroscience.22 
Furthermore, too many neuroimaging studies 
are under-powered and in need of replication. 
I believe that EEG and neuroimaging are still 
a very long way from replacing psychometrics 
with neurometrics. However, should 
“neurometric testing” become a dependable 
method anytime soon, I personally feel that 
an important goal for research should be to 
clarify whether extreme cognitive ability 
could be estimated neuroscientifi cally.

Clearly, the topic is ripe for research, and I 
now hope that if I am able to continue this 

Figure 13: An estimate of a patient’s IQ derived from the patient’s EEG.21
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research at postgraduate level, I might, at the 
very least, help to clarify the boundaries of 
what may be possible using EEG to estimate 
an individual’s cognitive capacities.

Questions/comments to:
W1565182@my.westminster.ac.uk or 
Gwyneth.rolph@yahoo.com
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